Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Aquat Toxicol ; 256: 106416, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2220445

ABSTRACT

To fight COVID-19 with uncountable medications and bioproducts throughout the world has taken us to another challenge of ecotoxicity. The indiscriminate usage followed by improper disposal of unused antibacterials, antivirals, antimalarials, immunomodulators, angiotensin II receptor blockers, corticosteroids, anthelmintics, anticoagulants etc. can lead us to an unimaginable ecotoxicity in the long run. A series of studies already identified active pharmaceutical ingredients (APIs) of the mentioned therapeutic classes and their metabolites in aquatic bodies as well as in wastewater treatment plants. Therefore, an initial ecotoxicity assessment of the majorly used pharmaceuticals is utmost requirement of the present time. The present in silico risk assessment study is focused on the aquatic toxicity prediction of 81 pharmaceuticals where 77 are most-used pharmaceuticals for COVID-19 throughout the world based on the literature along with one drug nirmatrelvir [PF-07321332] approved for emergency use by US-FDA and three other molecules under clinical trial. The ecotoxicity of the studied compounds were predicted based on the three aquatic species fish, algae and crustaceans employing the highest quality QSAR models available from the literature as well as using ECOSAR and QSAR Toolbox. To compare the toxicity thresholds, we have also used 4 control pharmaceuticals based on the worldwide occurrence from river, lake, STP, WWTPs, influent and effluent followed by high reported aquatic toxicity over the years as per the literature. Based on the statistical comparison, we have proposed top 3 pharmaceuticals used for the COVID-19 most toxic to the aquatic environment. The study will provide confident predictions of aquatic ecotoxicity data related to abundant use of COVID-19 drugs. The major aim of the study is to fill up the aquatic ecotoxicity data gap of major medications used for COVID-19.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Risk Assessment , Fishes , Pharmaceutical Preparations , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL